Testing strong gravity with high throughput X-ray spectroscopy

Chris Reynolds

Department of Astronomy University of Maryland

Constellation-X Black Hole Workshop GSFC, 17-18th September 2004

MHD accretion disk simulation (Hawley & Krolik 2001)

GR-MHD simulations by Hirose, Hawley & Krolik (2003)

Dissipation of work done by torque at radius of marginal stability

Accretion Luminosity

CSR et al (2004)

MCG-6-30-15
Fit with a Novikov-Thorne/Page-Thorne disk

CSR et al (2004)

Fit with a Agol & Krolik torqued disk (need "infinite efficiency case)

Armitage & CSR (2003)

Iron line variability

- λ Con-X will allow detailed study of line variability
- λ See effects of nonaxisymmetric structure orbiting in disk
 - Follow dynamics of individual "blobs" in disk
 - Quantitative test of orbital dynamics in strong gravity regime

Armitage & CSR (2003)

Non-axisymmetric structure may have been seen already...

Chandra-HETG data on NGC3516 (Turner et al. 2002)

Simulation results for inclination of 20 degs (summed over 2 full orbits)

A prime science target for Astro-E2

Relativistic iron line reverberation...

λ Reverberation

- X-ray source displays dramatic flares
- Flare produces "X-ray echo" that sweeps across accretion disk
- Iron line profile will change as echo sweeps across disk
- Needs high throughput
 spectroscopy but likely
 within reach of Con-X

CSR et al. (1999) Young & CSR (2000)

- λ Sensitive probe of strong gravity
 - Get inward and outward propagating Xray echoes
 - inward propagating echo is purely a relativistic effect
 - Inward propagating echo gives redbump on the iron line profile
 - Precise properties of red-bump are probe the Kerr metric (and allow measurement of BH spin)
- λ Side note... we already know that situation is not simple;
 - Current data suggest complex ionization changes associated with variability
 - Need hard X-ray capability of Con-X to deconvolve effects of disk ionization in a realistic spectrum.

14

Fig. 4.—Simulated transfer function for (a) an extremal Kerr hole and (b) a Schwarzschild hole. In both cases, the flare has been placed on the symmetry axis at a height of $10GM/c^2$ above the disk plane, and an observer inclination of 30° has been assumed. The data have been rebinned to produce these figures with improved signal-to-noise ratio.

Fig. 7.—Panel a shows the theoretical line response to the two overlapping flares described in the text. Panel b shows the simulated line response as seen by Constellation-X. The individual transfer functions of the two flares can be discerned. The data have been rebinned to produce these figures with improved signal-to-noise ratio.

Conclusions

- X-ray observations are already probing region in immediate vicinity of accreting stellar & supermassive black holes
- λ X-ray astronomy is on the verge of realizing its ultimate promise (BHFP, Con-X, and BHI/MAXIM)
 - Probe of BH growth back to cosmic "dark ages"
 - Constraints on strong field gravity
 - Detailed understanding of BH accretion
 - Accessed through high-throughput spectroscopy (Con-X), and direct imaging (BHI)